Lecture 8 - 2025 / 4 / 8
Channel Coding
Motivation:
- Noisy channel
- Algorithm reduces (corrects) error
Reptition Code
Decoding: Nearest Neighbor
Channel Coding
- M1→C1
- M2→C2
- ……
- Mm→Cm
Lower bound: {0,1}m→{0,1}n, Goal: dH(ci,cj)≥2t+1 (bits) correct t bits error
Given t,m, estimate a lower bound of n
Sphere packing bound: m≥2n/∑i=0t(in)
Upper bound: {0,1}m→{0,1}n, Goal: dH(ci,cj)≥δn (bits)
Given m,δ∈(0,1/2), find n such that there must exists c1,⋯,c2m∈{0,1}n s.t. dH(ci,cj)≥δn,∀i=j
Probabilistic method: c1,c2∼U{0,1}n, P(dH(c1,c2)≥δn)=1−∑i=0δn(in)/2n
Proof sketch:
-
Uniformly generatic c1,⋯,c2m, forall i=j, P(dH(ci,cj)<δn)<e−Θ(n)
-
P(∃i=j,dH(ci,cj)<δn)<(22m)e−Θ(n)
-
(22m)e−Θ(n)<1
Gilbert-Vashamov bound: n≥cm for some constant c, ∃c1,⋯,c2m, dH(ci,cj)≥δn.
Hamming Code
H∈Mat(GF(2)),Null(H)={x∣Hx=0}
What if ∀x,y∈Null(H) ?