Computability

A decision problem L{0,1}L \sube \{0, 1\}^*

an instance of the decision problem x{0,1}x \in \{0, 1\}^*, decide if xLx \in L

Kolmogrov Complexity

The kk-complexity of a string x{0,1}x \in \{0, 1\}^* w.r.t. a universal Turing Machine UU is defined as K(x):=minU(p)=xpK(x) := \min\limits_{U(p) = x} |p|.

Theorem. Let U,UU, U^* be 2 universal TMs. Then cN\exists c \in \N s.t. for x{0,1},KU(x)KU(x)+c\forall x \in \{0, 1\}^*, K_U(x) \le K_{U'}(x) + c, where cc doesn't depend on xx.

There is no algorithm such that given program pp and input xx, the algorithm can decide if pp with input xx halts in finite stops.

Theorem. KU(x)K_U(x) is not computable.

Proof. Assume for the sale of contradiction, p0\exists p_0 can compute KU(x)K_U(x) for all x{0,1}x \in \{0, 1\}^*, WLOG assume p0=O(103)|p_0| = O(10^3).

Construct p0p_0' with length O(103)O(10^3), but output a string ss with KU(s)=O(108):K_U(s) = O(10^8):

for si{0,1}s_i \in \{0, 1\}^* in shortlex order:
\quad compute KU(si)K_U(s_i) using p0p_0.
\quad if KU(si)108K_U(s_i) \ge 10^8:
\qquad output U(si)U(s_i), return.

Probability Density Estimation

Given partial information about the pdf f(x)f(x)

gi(x)f(x)dx=ri\int g_i(x) f(x) \text d x = r _i, i=1,2,,mi = 1, 2, \cdots, m

maxf:f(x)lnf(x)dx\max _f : -\int f(x) \ln f(x) \text d x

Continuous r.v. XX, pdf f(x)f(x), partial information

(1) E(X)=0E(X) = 0 (2) Var(x)=σ2Var(x) = \sigma^2

MaxEnt distribution ?