Computability
A decision problem L⊆{0,1}∗
an instance of the decision problem x∈{0,1}∗, decide if x∈L
Kolmogrov Complexity
The k-complexity of a string x∈{0,1}∗ w.r.t. a universal Turing Machine U is defined as K(x):=U(p)=xmin∣p∣.
Theorem. Let U,U∗ be 2 universal TMs. Then ∃c∈N s.t. for ∀x∈{0,1}∗,KU(x)≤KU′(x)+c, where c doesn't depend on x.
There is no algorithm such that given program p and input x, the algorithm can decide if p with input x halts in finite stops.
Theorem. KU(x) is not computable.
Proof. Assume for the sale of contradiction, ∃p0 can compute KU(x) for all x∈{0,1}∗, WLOG assume ∣p0∣=O(103).
Construct p0′ with length O(103), but output a string s with KU(s)=O(108):
for si∈{0,1}∗ in shortlex order:
compute KU(si) using p0.
if KU(si)≥108:
output U(si), return.
Probability Density Estimation
Given partial information about the pdf f(x)
∫gi(x)f(x)dx=ri, i=1,2,⋯,m
maxf:−∫f(x)lnf(x)dx
Continuous r.v. X, pdf f(x), partial information
(1) E(X)=0 (2) Var(x)=σ2
MaxEnt distribution ?