Lecture 5 - 2025 / 3 / 18
For general P=(p1,⋯,pn),Q=(q1,⋯,qn).
Let P~=(∑pi>qipi,∑pi≤qipi),Q~=(∑pi>qiqi,∑pi≤qiqi)
Then ∥P−Q∥1=∥P~−Q~∥1
Entropy Rate
r.v. X, P=(0.01,0.99)
(1) H(X)=0.07 bit
(2) Min average code length = 1 bit
Ratio = H(X)1 too large!
X1,X2,⋯,Xt,⋯ i.i.d. ∼P
Pack (X1,⋯,XT) together
(1) H(X1,⋯,XT)=T⋅H(X)
(2) Min average code length ≤T⋅H(X)+1 bit
Ratio = T⋅H(X)T⋅H(X)+1=1+O(T1)
Per r.v. TT⋅H(X)+1→H(X)
Source X:X1,X2,⋯,Xt,⋯
H(X)=T→∞limT1H(X1,⋯,XT)
H(X)=T→∞limH(XT∣X1,⋯,XT−1)
Differential Entropy
Continuous r.v. X pdf f(x)
h(X):=−∫−∞+∞f(x)logf(x)dx
Continuous r.v. X pdf f(x)⇒ discrete r.v. XΔ(Δ>0), where P(XΔ=i)=∫(i−1)ΔiΔf(x)dx
h(X)+logΔ1≈H(XΔ)
Discrete r.v. X, r.v. Z=aX, a>0, then H(X)=H(Z)
Continuous r.v. X, r.v. Y=aX, a>0, then h(X)=h(Y)
r.v. X∼N(μ,σ2),h(x)=21+log(2πσ)