Lecture 11 - 2025 / 4 / 29

  1. Define C:=maxP(X)I(X;Y)C:= \max_{P(X)} I(X; Y)
  2. Channel Coding Theorem
    If Rate<C,error0Rate < C, error \to 0
    If Rate>C,errorε0Rate > C, error \ge \varepsilon_0

Asymptotic Equipartition Property (AEP)

  1. The law of large numbers
    X1,,XnX_1, \cdots, X_n i.i.d., 1ni=1nXiX\frac{1}{n}\sum_{i=1}^{n} X_i\to X i.e.
    P(1ni=1nXiE(X)ε)n0P\left( \left| \frac{1}{n} \sum_{i=1}^{n} X_i - E(X) \right| \ge \varepsilon \right) \xrightarrow{n \to \infty} 0

  2. X1,,XnX_1, \cdots, X_n i.i.d., let gg be a function
    P(1ni=1ng(Xi)E(g(X))ε)0P\left( \left| \frac{1}{n} \sum_{i=1}^{n} g(X_i) - E(g(X)) \right| \ge \varepsilon \right) \to 0

  3. r.v. XX discrete, pmf of XX is p(x):=Pr(X=x)p(x) := \Pr(X = x), let g(x):=log1p(x)g(x) := \log \frac{1}{p(x)}
    P(1ni=1nlog1p(Xi)E(log1p(X))ε)0P\left( \left| \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{p(X_i)} - E\left(\log \frac{1}{p(X)} \right) \right| \ge \varepsilon \right) \to 0

w.p. 1\approx 1, P(X1,,Xn)2n(H(X)±ε)P(X_1, \cdots, X_n) \in 2^{-n (H(X) \pm \varepsilon)}

Which implies A{0,1}n,A:={(x1,,xn):P(x1,,xn)2n(H(X)±ε)}A \sube \{0, 1\}^n, A:= \{ (x_1, \cdots, x_n) : P(x_1, \cdots, x_n) \in 2^{-n (H(X) \pm \varepsilon)}\}, Ac={0,1}n\AA^c = \{0, 1\}^n \backslash A, P(A)1,P(Ac)0P(A) \approx 1, P(A^c) \approx 0

  1. Only need to care about AA
  2. P(x1,,xn)2nH(X)P(x_1, \cdots, x_n) \approx 2^{-nH(X)} in AA, so A2nH(X)|A| \approx 2^{nH(X)}

Joint Typical Sequence

(X,Y),(X1,Y1),,(Xn,Yn)(X, Y), (X_1, Y_1), \cdots, (X_n, Y_n) i.i.d. p(x,y)\sim p(x, y)

Jointly Typical Set

A:={(x1,y1,,xn,yn):PXY(x1,y1,,xn,yn)2n(H(X,Y)±ε)PX(x1,,xn)2n(H(X)±ε)PY(y1,,yn)2n(H(Y)±ε)}A := \left\{ (x_1,y_1, \cdots, x_n, y_n) : \begin{aligned} P_{XY}(x_1, y_1, \cdots, x_n, y_n) &\in 2^{-n(H(X, Y) \pm \varepsilon)} \\ P_X(x_1, \cdots, x_n) &\in 2^{-n(H(X) \pm \varepsilon)} \\ P_Y(y_1, \cdots, y_n) &\in 2^{-n(H(Y) \pm \varepsilon)} \end{aligned} \right\}

  1. P(A)1P(A) \approx 1
  2. (x1,,yn)A\forall (x_1, \cdots, y_n) \in A, P(x1,,yn)2nH(X,y)P(x_1, \cdots, y_n) \approx 2^{-nH(X, y)}, A2nH(X,Y)|A| \approx 2^{nH(X, Y)}

How to generate X1,Y1,,Xn,YnX_1, Y_1, \cdots, X_n, Y_n ?

  1. (Xi,Yi)P(X,Y)(X_i, Y_i) \sim P(X, Y)
  2. X1,,XnP(X)X_1, \cdots, X_n \sim P(X),
    Y1,,YnP(YX)Y_1, \cdots, Y_n \sim P(Y | X)

For a fixed typical sequence x1,x2,,xnx_1, x_2, \cdots, x_n, the number of corresponding typical sequences of y1,,yny_1, \cdots, y_n is 2nH(YX)2^{n H(Y | X)}.

If we consider typical sequences of XX and YY independently, then the probability that they form a joint typical sequence is 2nH(X,Y)2n(H(X)+H(Y))=2nI(X;Y)\dfrac{2^{nH(X, Y)}}{2^{n( H(X) + H(Y))}} = 2^{-n I(X;Y)}